

2008 Heavy Duty Truck Rally

1

HOW TO BUILD YOUR OWN BED

How To Build Your Own Bed

Design Considerations

- Load Balance
- Features
- Structure

Fabrication

- Ready Made Components
- One-Off Components

Lessons Learned

- David Czetli
- Henry Szymt

Load Balance

- Single Most Important Consideration is...
- What are the axle weights on the finished product?
 - With the trailer hooked up?
 - o Running Bobtail?
- Step 1: Weigh the truck with a full load of fuel
- Step 2: Determine what you want for target weight
 - Excel Tool Available on RVNomad.com in the tools section

Load Balance

Load Balance – The Math

The product of force, distance pairs on a lever are equal.

Forces on opposite sides of a fulcrum are in opposite directions.

Forces on the same side of a fulcrum are in the same direction.

Most of the time, we are solving for one of the forces.

So, if we are solving for f_1 , $f_1 = (f_2 * d_2) / d_1$

Load Balance – The Math

GCVW = Front Axle + Rear Axle + Trailer Axle

GVW_{Truck} = Front Axle + Rear Axle

 $GVW_{Trailer} = Pin + Trailer Axle$

Pin is weight is transferred to the Front Axle and Rear Axle

Load Balance – The Math - Pin

Rear Axle is the Fulcrum

Pin * Setback = f_{pin} * Wheelbase f_{pin} = (Pin * Setback) / Wheelbase

 $LFAW = UFAW - f_{pin}$

 $LRAW = URAW + Pin + f_{pin}$

GVW = LFAW + LRAW = UFAW + URAW + Pin

Load Balance – The Math – Rear Axle

☼ Load Balance − The Math − Front Axle

Rear Axle is the fulcrum

 $f_{Drom} = (Drom Weight *(Wheelbase - DromSB)) / Wheelbase$ $f_{Bed} = (Bed Weight * (Wheelbase - BedSB)) / Wheelbase$ **f**_{Hitch} = (Hitch Weight * (HitchSB – Wheelbase)) / Wheelbase $FAW_{Toter} = UFAW + f_{Drom} + f_{Bed} - f_{Hitch}$

Load Balance – Example 1

$$\begin{split} f_{Bed} &= (2500 * 70) \ / \ 200 = 875 & f_{Bed} &= (2500 * 100) \ / \ 200 = 600 & f_{Bike} &= (1200 * 100) \ / \ 200 = 150 & f_{Hitch} &= (600 * 50) \ / \ 200 = 150 & f_{Hitch} &= (600 * 100)$$

$$\begin{split} f_{Bed} &= (2500 * 130) \ / \ 200 = 1625 \\ f_{Bike} &= (1200 * 100) \ / \ 200 = 600 \\ f_{Hitch} &= (600 * 250) \ / \ 200 = 750 \end{split}$$

$$RAW = 7100 + 1625 + 600 + 750 = 10075$$

$$FAW = 9750 + 875 + 600 - 150 = 11075$$

Load Balance – Example 2

$$\begin{split} f_{Bed} &= (1800 * 80) \ / \ 240 = 600 \\ f_{Drom} &= (3200 * 120) \ / \ 240 = 1600 \\ f_{Hitch} &= (540 * 60 \ / \ 240 = 135 \\ f_{Bumper} &= (2880 * 90) \ / \ 240 = 1080 \end{split}$$

$$\begin{split} f_{Bed} &= (1800 * 160) \ / \ 240 = 1200 \\ f_{Drom} &= (3200 * 120) \ / \ 240 = 1600 \\ f_{Hitch} &= (540 * 300) \ / \ 240 = 675 \\ f_{Bumper} &= (2880 * 330) \ / \ 240 = 3960 \end{split}$$

$$RAW = 7100 + 1200 + 1600 + 675 = 10575$$

 $FAW = 10250 + 600 + 1600 - 135 = 12315$
 $RAW = 7100 + 1200 + 1600 + 675 + 3960 = 14535$
 $FAW = 10250 + 600 + 1600 - 135 - 1080 = 11235$

Calculate Max Pin Weight

Available axle weight is 19900 - 14535 = 5365

$$\begin{array}{l} f_1 * d_1 = f_2 * d_2 \\ f_1 * 300 = 5365 * 240 \\ f_1 = (5365 * 240)/300 \\ f_1 = 4292 \\ Assuming 20\%-25\%, Trailer Max is 17168-21460 \end{array}$$

Calculate Result on Front Axle

$$Pin = 4292$$

$$\begin{aligned} &f_1 * d_1 = f_2 * d_2 \\ &f_1 * 240 = 4292 * 60 \\ &f_1 = (4292 * 60) \ / \ 240 \\ &f_1 = 1073 \\ &FAW_{LoadedToter} = 11235 - 1073 = 10162 \end{aligned}$$

Prove using scale tickets

$$f_1 * d_1 = f_2 * d_2$$

 $f_1 = 5560$, $d_1 = ???$
 $f_2 = 7060 (16880-9820)$, $d_2 = 194$
 $d_1 = (f_2 * d_2) / f_1$
 $d_1 = (7060 * 194) / 5560$
 $d_1 = 246$, 52" behind the axle

Design Considerations

What Features Do You Want?

- Bed
 - o Carry Stuff?
 - o Add Weight?
- Drom Box
 - o Tool Storage?
 - Satellite Dish Storage?
 - RC Helicopters?
- Support for 5th Wheel
- Standalone Motorhome

- Storage Boxes
 - Special Items Cookery
 - Concert Organ with Footboard
 - MIG Welder w/ Tank
- Smart Car Loader
- Extended Boondocking
- Hitch
 - o ET, ET TSR
 - TrailerSaver
 - o BRP Head?

Major Design Considerations

- What wheelbase do you need?
 - Single or Dual?
 - If single, front, rear, some other?
- Where do you place the hitch
- What total length can you live with?

Secondary Design Considerations

Mounting Techniques

- O Direct Bolt On
- Brackets
- Isolation Bushings

Miscellaneous

- Access to Fuel Fillers
- Departure Angle Clearance
- o Rear Flat Tire
- Cab Shocks and Air Bags
- DOT Lights and Reflectors

Secondary Design Considerations

One Piece

- Installation and Removal requires heavy equipment
- Minimizes storage box panels
- Access to mounting points is difficult
- Access to repair items is more difficult, adds \$\$\$ to repair

Modular

- Allows for manual installation of parts.
- More labor during fabrication.
- Flexible structure
- Removal of parts for repairs possible
- More difficult final assembly

Design Consideration – Singling

$$\begin{split} f_{Trans} &= (2500^*(196\text{-}36))/196 = 2041 \\ f_{Cab} &= (3000^*(196\text{-}80))/196 = 1776 \\ f_{Storage} &= (400^*(196\text{-}104))/196 = 188 \\ f_{Fuel} &= (1800^*(196\text{-}126))/196 = 643 \end{split}$$

$$\begin{split} f_{Trans} &= (2500^*(252\text{-}36))/252 = 2143 \\ f_{Cab} &= (3000^*(252\text{-}80))/252 = 2048 \\ f_{Storage} &= (400^*(252\text{-}104))/252 = 235 \\ f_{Fuel} &= (1800^*(252\text{-}126))/252 = 900 \end{split}$$

Singling to the rear position transfers weight from the rear axle to the front axle. In our example above: 678 lbs.

Design Considerations - Hitch

Hitch (Applies to All Mfg)

- Must be directly mounted to the truck frame.
- Hitch Height needs to match trailer.
- Usually needs to be mounted below the top flange of the frame.

Mounting Plate

- o Must be ½" full plate OR two pieces of 6" wide, ¾" plate.
 - Source TrailerSaver mounting instructions
- No drilling in frame flanges, only in the frame web.
- No welding on frame in front of rearmost suspension mount point.

Hitch Placement

Hitch placement affects:

- Loaded axle weight
- Turning Capability
 - × Jack Knife
 - Campground backing
 - **▼** Urban maneuverability
- Deck Utilization

- Hitch placement may require structural truck work
 - Air bag valve actuator arm
 - Frame cross members

Hitch Placement – Avoid Jack Knife

2008 HDT Rally . October 4 - 11 . Hutchinson, KS

Design Considerations - Hitch

2008 HDT Rally . October 4 - 11 . Hutchinson, KS

Hitch Placement – Calculate Arc

The distance from the furthest point is given by the Pythagorean equation. A²+B²=C², A=16.5, B=51, therefore C=56.1 Always use 51 for "B"

Hitch Placement – Account For Dip

As the trailer and truck move off-angle, the cap of the trailer moves towards the truck as specified by Sin 10° * Height of Protuberance.

5° is trucking standard minimum. 10° covers just about every campground.

Hitch Placement – Useable Deck Space

Usable deck space is the area tangent to the Arc at it's midpoint.

Hitch Placement – Typical Installation

2008 HDT Rally . October 4 - 11 . Hutchinson, KS

DOT and Your Bed

Do you need a DOT sticker?

NO, But ...

What do they actually care about?

Safety Equipment

What's Wrong?

